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FROM COMPARISON DENSITY TO
TWO SAMPLE ANALYSIS

Emanuel Parzen
Department of Statistics
Texas A&M University

College Station, Texas 77843-3143 USA

1. Introduction
This paper on statistical data modeling is written to express my esteem for

Professor Hirotugu Akaike in celebration of his 65th birthday by a U.S./Japan
Conference on The Frontiers of Statistical Modeling: An Informational Approach
(held May, 1992 at the University of Tennessee). I like to play the game "how long
have you known Professor Akaike" because I have the good fortune of knowing
him since 1965.

Parzen (1979) argues that statistical data analysis should be defined as fit-
ting probability models to data. This paper presents typical concepts and recent
results of our modeling theory which emphasizes quantile domain functions, in-
formation measures, and comparison density estimation. Ultimate goals include:
unify parametric and nonparametric inference for continuous and discrete data;
demonstrate that mathematical statistical and data analytic approaches are both
needed for statistical inference; stimulate exoteric methods (applicable by applied
researchers) rather than esoteric methods (known only to a small group of math-
ematical statisticians); combine mathematical statistical and data analytic views
to develop methods of statistical analysis which are based on assumptions (known
model) which are tested in ways that provide insight how to model deviations of the
data from the assumed model (and thus identify a "true" model as an "iterated"
model).

Contents of the paper are: 1. Introduction; 2. Quantile domain functions;
F, Q; 3. Mid distribution and quantile functions: Fmid, Qmid; 4. Sample distribu-
tion and quantile: F, Q-; 5. Comparison distribution and comparison density for
continuous F, G; 6. Comparison distribution and comparison density for discrete
F, G; 7. Information measures: Renyi, Chi-square; 8. Information for comparison
density functions; 9. Information measures and entropy tests of fit; 10. Continuous
versions of discrete distribution functions: Fc, QC; 11. Comparison distributions of
one sample (continuous data); 12. One sample parameter estimation; 13. Compar-

Research supported by the U. S. Army Research Office
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ison distributions of two samples (continuous data); 14. Two sample comparison
density estimation.

2. Quantile domain functions: F, Q
The probability law of a random variable Y is described by its true distribution

function
F(y) = Prob[Y < y, -00 < y < oo,

and true quantile function

Q(u) = F- 1 (u) = inf[y : F(y) > u].

The most famous parametric model F(y; 0) is the Normal Distribution:

F~y; M, o) = 4((y -ju)/o),

C( ) = f (x)dx,

O(x) = (27r-.5 exp(-.5 2),

Q(u; P, 0) = P, + o4-1(,).

Every random variable Y has a probability mass function, defined

p(y) = Prob[Y = y].

One can define p(y) analytically in terms of the distribution function F(y) as the
jump in F at y. Similarly the spacing function of Y, denoted sp(u), is defined as
the jump in the quantile function Q at u; the jump at u is the difference between
the right hand and left hand limits at u.

Continuous random variables obey p(y) = 0 for all y. Discrete random variables
obey

1: P(Y) = .

We call a random variable bi-continuous if both p and sp are identically zero. One
of our goals is to unify data analysis for continuous and discrete data.

An (absolutely) continuous random variable Y has a distribution function which
is determined by its probability density function f(y) = F'(y). It is bi-continuous
if f(y) > 0 for all y satisfying 0 < F(y) < 1.

For a continuous random variable the density quantile function is defined by

fQ(u) = f(Q(u)).

Then Q(u) has a quantile density q(u) = Q'(u) satisfying

q(u) = 1/fQ(u), fQ(u)q(u) = 1.
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To prove this important formula verify that the indefinite integral of 1/fQ(u)
equals Q(u), or differentiate the identity FQ(u) = u which holds for continuous
F.

Quantile data analysis implements methods of Data Analysis in the distribution
F and the quantile Q domains. Parallel functions in the two domains are: F, Q;
p, sp; f, q. Important interpretations are given by log f and log q. The inverse of
f is not used but the inverse of q is important and is given by fQ.

Three general properties of quantile functions are:
F(Q(u)) = u if F is continuous at y = Q(u);
F(y) 2! u if and only if Q(u) y;

-(y)(u) = g(Fjl(u)) if g is a function with the mathematical properties of a
quantile function: non-decreasing and left-continuous.
Two important applications of quantile functions are concerned with transform-

ing Y to and from a random variable U which is Uniform[O,1j:
Y and Q(U) are identically distributed (since QQ(U)(u) = Q(Qu(u)) = Q(u)).
F(Y) and U are identically distributed if F is continuous (since QF(y)(U) =

F(Q(u)) = u).

3. Mid-distribution and quantile functions: Fmid, Qmid
We define several versions of the distribution function which we believe should

play important roles in statistical data analysis. Versions of F and Q which we
believe should be used routinely in the theory and practice of statistics are the
mid-distribution function Fmid(y), defined by

Fmid(y) = F(y) -

and the mid-quantile function defined by

Qmid(u) = Q(u) + .Ssp(u).

Note that F(y) is right continuous, and Q(u) is left continuous. Note that Fmid

and Qmid are not inverses of each other.
We recommend as the definition of the probability integral transformation (or

rank transform) of a continuous or discrete random variable Y

W = Fmid(Y);

it has mean E[W] = .5 and variance

VAR[Y] = (1/12)(1 - E p3(y)).
anly

It is easy to verify this for a continuous Y (then W is Uniform[0,1]) and for a
Bernoulli random variable Y taking values 0 and 1 with probabilities q and p;
Flid(o) - .5q and Fmid(1) = 1- .p.
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4. Sample distribution and quantile: F-, Q"
Our approach to data analysis of a data set YI,..., Y. involves defining sample

versions of F and Q. The initial way to represent a sample is to form its sample
distribution function

F'(y) f fraction of sample < y

and its sample quantile function

Q-(u) = F-(u)

Explicit formulas for F" and Q- are expressed in terms of the distinct values in
the sample, denoted vi < ... < vk, their relative frequencies

Pj" = fraction of sample = vj,

and their cumulative relative frequencies

uj = P+- + Pj',j= 1,...,k.

Define uo" = O, v0 = -00, Vk+1 = 00.
The sample distribution function is discrete (piecewise constant) satisfying (for
0=ol,...,k)

F-(y) = uj" for v; < y < v+j.

The sample quantile function is discrete (piecewise constant) satisfying (for j =
1..k)

Q'(u) = vj for uj-1" < u < j.
We summarize these formulas by saying F- and Q- are piecewise constant be-

tween their values
F"(vj) --- ,

Q-(uj,) = vj.

5. Comparison distribution and comparison density for continuous F, G
Let Fe be a specified continuous distribution (satisfying QOFO(y) = y), which is

a model for F, the unknown true distribution function of a continuous random vari-
able Y. An important conceptual tool in statistical data analysis is transorming
Y to the random variable W = Fe(Y) which has quantile function

Qw(U) = F9(Qy(u))
and distribution function

Fw(y) = Fy(Qe(u))

How does one benefit by transforming probability law estimation problems to
probability law estimation for a variable W on the unit interval? One could form
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an estimator of the probability density of Y from an estimator of the probability
density of W by sample analogies of the formulas relating their probability densities

fW(Y)-- fY(Qo(u))/foQo(u),
fy(y) = fo(y)fw(F(y)).

Estimation of fw(u) provides estimation of fy(y). One could form an estimator
of the quantile and quantile density function of Y by sample analogues of the
formulas

QY(u) = Q(Qw(U)),
qy(u) = qo(Qw(u))qw(u)

which require estimation of Qw(u) and qw(u). In our view the conceptual im-
portance of the transformation to W comes from interpreting qw as a comparison
density function d(u; Fy, F).

To two distribution functions F and G we associate a comparison distribution
function on 0 < u < 1, denoted D(u) = D(u; G, F). We consider three cases: both
continuous; both discrete; one continuous and one discrete.

When F and G are continuous we define

D(u;G,F) = F(G-1 (u))

with comparison density function d(u) - D'(u) given by

d(u) = d(u; G,F) = f(G-1(u))/g(G-1(u)).

We assume that f(y) > 0 implies g(y) > 0. Then D(0) = 0, D(I) = 1. We call F
and G equivalent if f(y) > 0 if and only if g(y) > 0.

In terms of comparison distribution functions we express the quantile and dis-
tribution functions of W = Fo(Y):

Qw(u) = D(u; Fy, Fe) - D(u; data,model)
Fw(u) " D(u; Fe, Fy) = D(u: model,data).

6. Comparison distribution and comparison density for discrete F, G.
When F and G are discrete we assume that their respective probability mass

functions PF(Y) and PG(Y) satisfy

PF(Y) > 0 implies PG(Y) > 0.

We call F and G equivalent if PF(Y) > 0 if and only if PG(Y) > 0. In the discrete
case we define first the comparison density

d(u) = d(u; G, F) = PF(G-l(u))/PG(G-(u))

and define its integral D(u) = D(u; G, F) by

D(u) = D(u; G, F) = j d(u')du'.

5



Our assumptions guarantee that D(1) -1.
Analogues of this definition will be given in section 11 for F continuous and G

discrete based on the following characterization of D(u); it is a P-P plot obtained
by joining linearly the points

(0,0);(G(vj),F(vj)),j = 1,...,k;(1, 1)

where v1 < ... , v. are the distinct values at which G jumps (which we have
assumed to include all values at which F jumps).

We call our approach to data analysis "functional" because it emphasizes form-
ing and smoothing functions on the interval 0 _< u < 1; raw estimators d'(u; Fy, Fq)
and d(F 9 ,Fy) are smoothed to form estimators d"(u; Fy, Fp) and d"(u; FO, Fy).
The graphs it provides for graphical data analysis are pictures of functions.

7. Information measures: Renyi, Chi-square
Comparison densities provide insight into information methods because infor-

mation measures of univariate distributions can be expressed in terms of d(u; F, G).
Information measures play a central role in statistical data analysis because they
provide tools to measure the "distance" between two probability distributions F
and G. The (Kullback-Liebler) information divergence is defined (Kullback (1959))
by (our definitions differ from usual definitions by a factor of 2)

I(F; G) = (-2) L 0log(g(z)/f(x))f(z)dx

when F and G are continuous with probability density functions f(x) and g(z).
When F and G are discrete, with probability mass functions PF(z) and PG(z),
information divergence has an analogous definition:

I(F; G) = (-2) E log{pG(z)/pF(z)}pF(X).

An information decomposition of information divergence is

I(F; G) = H(F; G)- H(F),

in terms of entropy H(F) and cross-entropy H(F; G):

H(F) = (-2) {log f(z)}f(z)dz,

H(F; G) = (-2)fE-{log (z)}f()dx.

Adapting the funci-.mental work of Renyi (1961) we define Renyi information
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of index A. For continuous F and G: for A # 0, -1

IRA (F; G)- A(1 A) log I() } f(y)dy
A(1+A) ogf g'\ A g(y) dy

-2 f(y)dy

IR0(F; G) = 2 g( y ) log g f(y)dyAYy) A JY) @
__ 2 / 9(!y) lo gm ) gmY + }~yd

y) f(A)

-2J{log g ( y) f(y)
= -2 1 flog 9 'Y) g y 1 f(y)dy

An analogous definition holds for discrete F and G.

The second definition provides: (1) extensions to non-negative functions which
are not densities, and also (2) a non-negative integrand which can provide diag-
nostic measures at each value of y.

Renyi information, for -1 < A < 0, is equivalent to Bhattacharyya distance.
Hellinger distance corresponds to A = -. 5.

In addition to Renyi information divergence (an extension of information statis-
tics) one uses as information divergence between two non-negative functions an
extension of chi-square statistics which has been developed by Read and Cressie
(1988). For A # 0, -1, Chi-square divergence of index A is defined for continuous
F and G by

C.A(F; G) - JBA ( f(! ) f(y)dy

where

B.X(d)- =( I)d( -d11

Bo(d) = 2{dlogd- d+ 1}

Bl(d) = -2{logd- d+ 1}

7



Important properties of BA(d) are:

BA(d) 0,BA(1) B- B(1) = 0,
B' ,(d) ='- (d-' - 1) , B'(d) = 2dA- 1

Bl(d) =(d- 1)2

Bo(d) = 2(dlogd-d + 1)

B_. 5(d) 4 (d5 - 1)2

B1(d) = -2(logd- d + 1)

B2(d)= d (d-' - 1)2

An analogous definition holds for discrete F and G. Axiomatic derivations of
information measures similar to CA are given by Jones and Byrne (1990).

The Renyi information and chi-square divergence measures are related:

IRo(F; G) = CO(F; G)
IR-I (F; G) = C-I(F; G)

For A # 0,-1,

.\(F; G)= A(1+ A) log 11 + ((I A)) CA(F; G)}

Interchange of F and G is provided by the Lemma: when F and G are equiva-
lent,

CA(F; G) = C_(l+A)(G; F)

IRA(F; G) = IR-(l+A)(G; F)

Ezample: Renyi information divergence of two zero mean univariate normal
distributioni. Let Pj be the distribution on the real line corresponding to Normal

(0, K,) with variance Kj. Letr = K2. Then

d(u; P2 , Pi) = W5 exp {-.5(pc - 1)14-1(u)12}

IR-1(P=; PI) = . - 1 - log c,
IRA(P2; PI) = (1/A){log, - (1 + AWI log {1 + (1 + A)(,c- M+I

CA (P2 ; F1)= {2/A(1 + A)1 ,1 5(1+A){1 + (1 + A)(- .5

8



8. Information for comparison density functions
Information divergence I(F; G) is a concept that works for both multivariate

and univariate distributions. In the univariate case we are able to relate I(F; G)
to the concept of comparison density d(u; F, G),

For a density d(u), 0 < u < 1, Renyi information (of index A), denoted IRA(d),
is non-negative and measures the divergence of d(u) from uniform density do(u) =

1, 0 < u < 1. It is defined:

IRO(d) = 2 {d(u)logd(u)}du = 2] {d(u)logd(u) - d(u) + 1}du

IR- =(d) -2 {logd(u)}du = -20 {logd(u) - d(u) + 1}du

for A # 0 or -1

IRA(d) {2/A(1 + A)} log j0 d(u)1 du

= {2/A (1 + A)} log I (f{d(u)}l+A - (1 + A) {d(u) - 1})du.

To relate comparison density to information divergence we use the concept of
Renyi information IRA which yields the important identity (and interpretation of
I(F; G)!)

I(F;G) = (-2) logd(u;F,G)du

= R_ I(d(u;F,G)) = IRO(d(u; G, F)).

For a density d(u), 0 < u < 1, define

CA(d) = BA(d(,,))du.

The comparison density again unifies the continuous and discrete cases. One can
show that for univariate F and G

CA(F, G) = CA(d(u; F, G))

For a random sample of a random variable with unknown probability density
f, maximum likelihood estimators 6r of the parameters of a finite parameter model
fq of the probability density f can be shown to be equivalent to minimizing

IRl(f;fe) = Rk..1 (d(u; F-,Fe))

9



where f- is a raw estimator of f (initially, a symbolic sample probability density
formed from the sample distribution function F-).

9. Information measures and entropy tests of fit

To test the goodness of fit hypothesis for a continuous random variable Y

H0 : Fy(y)= Fo(y),

many statistics have been proposed which start with the probability integral trans-
formation

W = FO(Y)

for which the goodnes of fit hypothesis is H0 : W is Uniform[0,1].
An entropy test of fit is Moran's statistic which transforms Y1,... ,Yn to

W2,..., Wn and forms the order statistics W(1;n) < ... < W(n;n) with spac-
ings

S (O) = W(i;n) - W(i - 1; n),j = 1,...,n + 1,

defining W(O, n) = 0, W(n + 1; n) = 1 Moran's statistic is often defined as

n+1

Z -log Si(0),
i- I

We prefer to define it as

n+l

M(O) = (n + 1)- 1  (-2) log(a -+ 1)Si(O).
i= 1

Under the null hypothesis, it is asymptotically normal with mean 2y (y = .57722,
Euler's constant), and variance

4(n + 1)-I((7r2/6) - 1).

Small -sample asymptotic chi-square and beta distributions (given by Smethurst and
Mudholkar (1991)) are more appropriate for an entropy interpretation.

In order to understand and extend M'(O), we regard it as an estimator of a
quantity M(O) defined by probability theory. The original observation Y has true
distribution function Fy and quantile function Qy(u) = F7 1 (u). The transforma-
tion W = Fo(Y) has quantile function Qw(u) = Fo(Qy(u)) and distribution func-
tion Fw(u) = Fy(Qo(u)); W has quantile density qw(u) = fe(Qy(u))/fyQy(u),
and entropy

H(W) = 0 (-2logfW(w))fW(w)dw = j2logqw(u)du.

Under the null hypothesis H0 : Fy = Fe, qw(u) is identically 1, and H(W) = 0.

10



Note -H(W), the neg-entropy of W, is non-negative and is the population
parameter, denoted M(O), which is being non-parametrically estimated by Moran's
statistic M-(O).

How do we benefit from estimating entropy (or neg-entropy) of W? It provides
tests of H0 and can provide (through suitable analogues of Akaike Information
Criterion) insight about selection of alternative models to fit when one rejects
H0 . Thus understanding and improving Moran's statistic requires us to solve
problems of density estimation, especially estimation of the smooth comparison
density d(u; Fy, FO) from raw estimators

d'(u; Fy, Fo) = d(u; F'C, FO),

where F" is a continuous version of the discrete distribution function F.
Another important interpretation of M(O) is M(O) = I(f; fe), the Kullback

information divergence between the true F(y) and the model FO(y).

10. Continuous versions of discrete distribution functions
To compare a continuous and a discrete distribution we propose forming a

continuous distribution function version of a discrete one. To estimate a continuous
distribution function F from data we recommend first forming our continuous
version I'c of the discrete distribution function given by the sample distribution
function F- formed from the data.

For discrete data we recommend estimating the continuous version FC of its
discrete distribution function F. We conjecture that these recommendations pro-
vide a unified theory of discrete and continuous data analysis as well as improved
methods of continuous data analysis.

To define the continuous version of a discrete distribution F, we assume that
it can be described by a finite number of points (vj, uj) such that

F(vj) = uj for j = ,.,k.

Note that uk = 1. Define uO = O; then 0 = uo < Ul < ... < uk1.

Its quantile function Q(u) is discrete and satisfies, for j = 1,...,k,

Q(uj) = V.

Define "mid-values" v5, = = 0,..., k, by

VC = 1 C
V0 =Vk = Vk,
vq --. 5(vj +r vj+l) for j --- 1, ... ,1k- 1.

Define Fc and Qc to be piecewise linear between its values (for j 0, 1, ... , k)

QC(Uj) = VC
v=

11



We call F' and QC continuous (piecewise linear) versions of the discrete (piecewise
constant) functions F and Q.

It is interesting to compare the continuous version of a discrete distribution to
its mid-distribution Fmid whose definition we recall; define pj = uj - uj_1 and

Fmid(v) = uj - .5pj for j = 1,..., k.

One conjectures that approximately (and exactly when vj are equi-spaced)

Fc(vj) = uj - .5pj,

so that approximations to F" are also approximations to Fmid.
To justify our view that these concepts are very natural, we would argue that

the continuity correction when one approximates a discrete distribution by a con-
tinuous one (say the binomial by the normal) can be explained by regarding the
limiting continuous distribution as approximating FC and Fmid rather than F.

Let F be the distribution function of a Binomial(n,p) random variable. The
continuity correction says that (for x = 0,1,... , n) approximately

F(x) = F"(x + .5) = 4((x + .5 - np)/(np(l - p))-5)

Note that (for x = 0, 1,... , n) approximately

FC(x) = Find(x) = 1((x - np)/(np(l - p)-5).

11. Comparison distributions of one sample (continuous data)
Given a sample Y,..., Yn from a continuous distribution F, we recommend as

the first step in data analysis to compute and plot F"c and Q-C, the continuous
versions of the discrete sample distribution and quantile functions. We regard Q"c
as a raw estimator of the true quantile Q which provides a minimal amount of
smoothing of the observations.

The process of fitting a model to the data can be formulated in terms of a
specified continuous distribution function F6 (whose form may be guessed from a
visual examination of Q-c, normalized at u = .5 to equal 0 and to have slope 1
(compare Parzen (1986))). We not only estimate F but also test the goodness of
fit hypothesis H0 : F = F. To motivate our approach let us review some methods
of testing a goodness of fit hypothesis H0 for continuous data.

A graphical diagnostic of Ho is the Q - Q plot which looks for linearity in the
graph of

(QO(F'rnid(vj)),vj),j = 1,...

an alternative is the Q - Qc plot which graphs the points

(Q#(uj),,v) = (Q9(F'(vj)),vj),j = 1,...,k- 1.

12



Goodness of fit tests of H0 have traditionally been expressed by statisticians
as measures of F-(y) - Fo(y), the difference of distribution functions. Typical
measures are non-linear functionals such as

D[KolmogorovSmirnov] = supremumylF'(y) - Fo(y)l

D[CramervonMises] = IF(y)- FO(y)I2 dFe(y).

Goodness of fit compares probabilities; we believe that probabilities p- and
p , representing data and model, should be compared not by their differences but by
their ratio! In symbols, measure (p-/p^) - 1 rather than p'--p. Therefore goodness
of fit tests should be based on measures of the difference from the identity function
DO(u) = u, 0 < u < 1, of comparison distribution functions. Goodness of fit tests
for uniformity are traditionally based on

D(u; Fe, F) = Fw'(u) = F-(Qo(u)), 0 < u < 1,

the sample distribution function of the probability integral transformation W =
FO(Y). Traditional maximum likelihood estimators of 0 are chosen by the criterion
that the sample quantile function

D(u;F",FO) = Qw'(u) = Fe(Q(u),0 < u <1,

has minimum Kullback information distance from Do(u) = u.
This paper proposes that we need to overcome the problem that F' and Q- are

discrete and are not directly covered by our definitions of comparison distribution
functions; we recommend that data analysis be based on the definitions below
of continuous raw comparison functions, denoted DC(u; F", FO) and Dc(u; Fe, F-).
Analogously one defines comparison distribution functions, denoted DC(u; G, F)
and Dc(u; F, G) rather than D(u; G, F) and D(u; F, G), when F is continuous and
G is discrete.

Recall F-(vj) = uj for j = 1,..., k. Let v5, j = 0,..., k be mid values. Define
forj =,...,k- 1

wj= FO(Q~C(uj)) = Fg(v])).

Assume 0 < ... Wk < 1.
Define Qc (u) as a piecewise linear curve connecting the values

(0,O0), (uj, wj) for j 'M= 1,..k - 1, (1, 1).

Define F&,(u) as a piecewise linear curve connecting the values

(O,O),(wj,uj)forj = 1 .... k- 1,(1,1).

The derivatives, denoted q' (u) and f&(u) respectively, are sample quantile
density and probability density functions. Define dc(u; F', Fe) = qc(u), dc(u; FO,
F') = f(u).

13



One smooths raw densities to form smooth estimators, denoted

qw^( u), QW^( U), fW^( u), Fw^( u).

The adequacy of the smoothing can be judged by comparing on one graph Qe,
and Qw^, and comparing on one graph FW and FWa. In this way one can develop
fy^(y) and Qya(u).

12. One sample parameter estimation.
Regular maximum likelihood estimators 8^ are parameter values minimizing

f I- log f 9 (Q-(u))du

or equivalently minimizing the negative of the average log likelihood

n'

-L(O) = (1/n) E-logfe(Y(j;n))
j=l

A maximum spacings estimator, denoted 0, can be obtained (compare Ranneby
(1984)) by minimizing (with respect to all possible parameter values O) the neg-
entropy

2 -log dc(u; F-, FO)du

or equivalently minimizing

k
-2 Z(uj - uj ._ )log((Fe(Q-(uj)) - FO(Q' (uj- 1))/(uj - ujl))

j=1

In this expression, logarithm is taken after integration rather than before; conse-
quently it provides estimators in non-regular cases.

Minimum information estimators (more precisely, minimum Renyi information
of index A estimators) 0^, minimize (for -1 < A < 0, and especially A = -. 5
(compare Beran (1977))).

IR x (d' (u; F", Fe)).

Regular maximum likelihood estimators (which correspond to A - -1) satisfy the
estimating equations

o So, (Q'C(u)) du = 0

where
S9 ,(Y) = 60 log fe(Y)

14



is the score function of component Oi of the vector parameter 0. Minimum infor-

mation estimators satisfy the estimating equations

J1 (d' (u; F", Fq))l+ So, (QC(u)) du = 0.

Minimum information estimators provide robust estimators.
To test if robust minimum information estimators of a given data set are to

be preferred to regular maximum likelihood estimators, one could test if the latter
satisfy the estimating equations of the former. The theory and practice of this
"test for robustness" are open research problems.
13. Comparison distributions of two samples (continuous data)

A central problem of statistics is test

H0 : F 1 = F2 ,

the equality of two continuous distribution functions F and F2 . The data are
assumed to be independent observations of a first sample

Xl,...,Xnl assumed to be distributed as F 1,
and a second sample

Y,-... , Yn2 assumed to be distributed as F2 .
Let F- and F2 - denote the sample distribution functions of the two samples.
The pooled sample consists of all X and Y values; its sample distribution

function is denoted F-. Let n = n 1 + n2 be the total sample size. Let pj = nj/n
be the fraction of the pooled sample in the j-th sample. One can represent

F" = pjFI" + p 2 F2 ".

it is an estimator of the true pooled distribution

F = pIF1 + p2F 2 .

The novelty of our approach to testing Ho is our proposed comparison distri-
bution function

D-(u) = D(u; F, FI-)
which estimates D(u) = D(u; F, FI). Because P and FI" are both discrete, the
comparison distribution D-(u) is defined in terms of the comparison density func-
tion

d(u) = d(u; F, Fl).

The asymptotic distribution of D-(u) as an estimator of D(u) = D(u;.F, F1) can be
shown to be the same as the Pyke-Shorack two sample process. The mathematical
statistics is the same, but the data analysis is greatly improved.

Linear rank statistics to test H0 can be represented as linear functionals

< J(u),d(u) >= J(u)d(u)du
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for suitable score functions J(u). The Wilcoxon statistic (which tests for a shift in
location) corresponds to J(u) = u, whose orthonormal version is J(u) = 12"5(u -
.5).

14. Two sample comparison density estimation.
We propose that the best summary of two sample data analysis is not a p

value of a linear rank statistic but a smooth density estimator d(u) of the true
comparison density d(u) = d(u; F, FI).

The asymptotic distribution of estimators d^(u) which smooth d(u) is best
understood by normalizing it to be between 0 and 1 by defining

p(u) = pd'(u)

whose smooth estimators are denoted p^(u). Their asymptotic distribution theory
(outlined below) is developed on the assumption that they are estimators of a true
comparison density d(u) = d(u; F, F1 ); let p(u) = pjd(u). The asymptotic variance
of p^(u) can be shown to be proportional to p(u)(1 - p(u)) which means that its
asymptotic distribution is similar to that of an estimator p of a probabiity p.

In contrast the asymptotic variance in the one sample case of the smooth quan-
tile density estimator q^ is proportional to q2 , and the asymptotic variance of the
smooth probability density estimator f is proportional to f if f is a standard
kernel estimator, and is proportional to f 2 if f^ is a nearest neighbor estimator.

One of the joys of a unifed framework for one sample and two sample data
analysis is that it can comprehend and explain the different qualitative behavior
of estimators of different types of densities. Parzen (1983) states, and outlines
proofs of the following results about comparison density estimation.

A kernel comparison density estimator has the formI
d^(u) = KM(U - t).t(t)dt

where KM(00
KM(t) E e 2 1itvkM(V)

kM(v) k(M!)

We call M truncation point (or effective number of parameters); it is chosen as a
function of n and tends to oo, as n tends to co, at a suitable rate. Let

0L K2(i)dt = k2(x)dx

One can show that (by letting M tend to oo at a suitable rate)

lim n Var [(u), = -P(U)(1 _ p(u))
n--too MW
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The numerical derivative density estimator

d^(u) = (2h)-l(D(u + h) - D-(u - h)

corresponds to M = 1/h and k(z) = (sin27rz)/27rx; it has asymptotic variance

lim hn Var[p^(u)] = .5p(u)(1 - p(u)).

Evaluate Kf from K(t) = .5 for ItI < 1, 0 otherwise.
An autorcgressive (of order m) estimator has asymptotic variance

lim n Var[p(u)l = 2 p(u)(l - p(u))n-oo m

Model order selection techniques can be developed by adapting Akaike (1973),
Atilgan and Bozdogan (1990), Sakamoto, Ishiguro, Kitagawa (1983).

To obtain one sample probability density estimator results from the two sample
results, let the first sample have unknown distribution F, the second sample have
known distribution F2, and let n2 be very large. Then the pooled distribution
F = F2, d(u) equals d(u; F2 , FI), and Pl tends to 0. The kernel probability density
estimator of fh has asymptotic variance

lim - Var[dt(u; F2, F)] = K2d(u; F2, FI)n1-oo M

since
p(u) = Pfl(F-(u))/f(F-l(u)) " pld(u; F2, F).
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